D

ATTACHMENT D

Supporting Engineering Statement of Neil Smith, Dated June 14, 2001

ENGINEERING STATEMENT

The engineering data contained herein have been prepared on behalf of KNOXVILLE CHANNEL 25, L.L.C., applicant for a new analog television station to operate on Channel 26 in Knoxville, Tennessee, in support of its Petition for Rulemaking to change operation to Channel 7 and operate digitally. This change is required because Channel 26 has been allotted for digital use in Knoxville.

The reference coordinates for this proposed allotment are 36° 00′ 35.9″, 83° 55′ 56.5″, which describe an existing tower from which the Channel 7 facility would operate. We have conducted an interference analysis with respect to DTV allotments using the V-Soft Communications "Probe" computer program, which has been found generally to mimic the FCC's interference program. The results of the study are included as Exhibit A and show an absence of objectionable interference. This study assumed facilities of 100 kw, directional, at 367 meters. Exhibit B is a copy of Pages 18 and 19 of FCC Form 301 providing the technical specifications of the facility, and Exhibit C provides full data on the specified antenna system.

We have studied the RF transmissions of this facility with regard to their environmental effect. Employing the methods set forth in *OST Bulletin No. 65* and considering the vertical pattern of the proposed antenna, we calculate maximum power density two meters above ground from the proposed facility to be 0.00050 mw/cm² at

locations 160 meters southwest of the base of the tower. This is but 0.25 percent of the 0.20 mw/cm² reference at this frequency for uncontrolled areas. Since the proposed contribution to the ambient power density level will be less than five percent of the reference, and since the applicant will take whatever corrective steps are necessary, such as reducing power or leaving the air temporarily, to ensure that workers operating in the vicinity of the antenna are not exposed to excessive nonionizing radiation, a grant of an application for the proposed facility would clearly be a minor environmental action.

It should be noted that there is now pending before the Commission a proposal by Knoxville Channel 25, L.L.C. for an analog facility to operate on Channel 25 in Knoxville. That facility would provide Grade B service to 931,082 persons. The instant alternative proposal for Channel 7, digital, would have 1,354,181 persons within the digital service contour.

I declare under penalty of perjury that the foregoing statements and the attached exhibits, which were prepared by me or under my immediate supervision, are true and correct to the best of my knowledge and belief.

NEIL M. SMITH

June 14, 2001

DE MINIMIS INTERFERENCE ANALYSIS

PROPOSED DIGITAL TELEVISION STATION CHANNEL 7 - KNOXVILLE, TENNESSEE

NTSC FACILITIES

				Interference Losses (Population)							
Call	City of License	<u>Ch.</u>	Grade B Population <u>F(50,50)</u>	NTSC Only	NTSC & DTV Without Prop. Ch. 7	Unmasked DTV% ¹	NTSC & DTV With Prop. Ch. 7	Unmasked DTV	<u>%</u> 1	Prop. Ch. 7 Contribution	
WCIQ	Mount Cheaha, AL	7	2,570,512	225,549	228,443	2,894 0.1	268,825	43,276	1.7	40,382	1.6
WSPA-TV (Lic.)	Spartanburg, SC	7	2,884,912	151,405	154,627	3,222 0.1	155,749	4,344	0.2	1,122 <	< 0.1
WSPA-TV (CP)	Spartanburg, SC	7	2,912,122	171,373	171,563	190 < 0.1	172,651	1,278	< 0.1	1,088 <	< 0.1
					DTV FACILITIE	<u>s</u>					
						Interference	Losses (Popu	lation)			
			NTSC/DTV Grade B Pop.	NTSC	NTSC & DTV Without	Unmasked	NTSC & DTV With	Unmasked		Prop. Ch. 7	
Call	City of License	<u>Ch.</u>	•	Only	Prop. Ch. 7	DTV %	Prop. Ch. 7	DTV	<u>%</u>	Contribution	%
WLJC-DT (CP)	Beattyville, KY	7	676,538	93,066	93,066	0 0	94,802	1,736	0.3	1,736	0.3
WLJC-DT (Appl.)	Beattyville, KY	7	781,632	111,988	111,988	0 0	115,062	3,074	0.4	3,074	0.4
WLJC-DT (Allot.)	Beattyville, KY	7	416,369	23,178	23,178	0 0	26,240	3,062	0.7	3,062	0.7

¹ Cannot exceed 10%, under FCC *de minimis* interference standards.
² Cannot exceed 2%, under FCC *de minimis* interference standards.

SECTION III-D DTV Engineering

TECHNICAL SPECIFICATIONS

Ensure that the specifications below are accurate. Contradicting data found elsewhere in this application will be disregarded. All items must be completed. The response "on file" is not acceptable.

TECH BOX

1.	Chan	nel Number: DTV Analog TV, if any						
2.	Zone							
3.	Anter	ona Location Coordinates: (NAD 27)						
4.	Ante	136 ° 00 36 X N S Latitude 1043696						
		Not applicable FAA Notification Filed with FAA						
5.	Ant	enna Location Site Elevation Above Mean Sea Level: — 678 meters						
6.	Ove	Overall Tower Height Above Ground Level: 332 meters						
7.	Height of Radiation Center Above Ground Level: 294 meters							
8.	Height of Radiation Center Above Average Terrain: 367 meters							
9.	Maximum Effective Radiated Power (average power): 100 kW							
10.	Ante	enna Specifications:						
	a.	Manufacturer Model ATW9V3-HSS-7S						
	b.	Electrical Beam Tilt: 0.75 degrees Not Applicable						
	c.	Mechanical Beam Tilt: degrees toward azimuth degrees True X Not Applicable						
		Attach as an Exhibit all data specified in 47 C.F.R. Section 73.625(c). Exhibit No. C						
	d.	Polorization: X Horizontal Circular Elliptical						

FCC 301 (Page 18) May 1999

EXHIBIT B-1

PROPOSED DIGITAL FACILITY

CHANNEL 7 - KNOXVILLE, TENNESSEE

Direction	al Antenna	Relative F			ot applicab	ele (Nondir	ectional)			
	Rotat	tion:	0	X N	lo rotation			···		
Value	Degree	Value	Degree	Value	Degree	Value	Degree	Value	Degree	Value
0.433	60	0.463	120	0.622	180	0.965	240	0.981	300	0.691
0.470	70	0.426	130	0.707	190	0.984	250	0.961	310	0.605
0.503	80	0.405	140	0.784	200	0.995	260	0.931	320	0.521
0.521	90	0.416	150	0.848	210	1.000	270	0.890	330	0.451
0.519	100	0.463	160	0.899	220	0.999	280	0.837	340	0.410
0.498	110	0.537	170	0.937	230	0.993	290	0.770	350	0.407
is	I	Ĺ		<u> </u>	<u></u> _			L	L	LJ
If a directional antenna is proposed, the requirements of 47 C.F.R. Section 73.625(c) must be satisfied. Exhibit required. Exhibit No.							li i			
 Does the proposed facility satisfy the interference protection provisions of 47 C.F.R. Section 73.623(a)? (Applicable only if Certification Checklist Items 1(a), (b), or (c) are answered "No.") If "No," attach as an Exhibit justification therefor, including a summary of any related previously granted waivers. If the proposed facility will not satisfy the coverage requirement of 47 C.F.R. Section 73.625, attach as an Exhibit justification therefor. (Applicable only if Certification Checklist Item 3 is answered "No.") 										
13. Environmental Protection Act. Submit in an Exhibit the following: Exhibit No.										
a. If Certification Checklist Item 3 is answered "Yes," a brief explanation of why an Environmental Assessment is not required. Also describe in the Exhibit the steps that will be taken to limit RF radiation exposure to the public and to persons authorized access to the tower site. By checking "Yes" to Cettification Checklist Item 3, the applicant also certifies that it, in coordination with other users of the site, will reduce power or cease operation as necessary to protect persons having access to the site, tower or antenna from radiofrequency electromagnetic exposure in excess of FCC guidelines. If Certification Checklist Item 3 is answered "No," an Environmental Assessment as required by 47 C.F.R. Section 1.1311.							inent 1305, .1307 ee <i>al</i> so			
	Value 0.433 0.470 0.503 0.521 0.519 0.498 The adirection rust be satist be satisfied by satisfication be satisfied by sa	Rotate Value Degree 0.433 60 0.470 70 0.503 80 0.521 90 0.519 100 0.498 110 all is f a directional antenna nust be satisfied. Exhibited E	Rotation: Value Degree Value	Rotation: Value Degree Value Degree	Rotation: Value Degree Value Degree Value	Rotation: Value Degree Value Degree Value Degree	Rotation: Value Degree Value Degree Value Degree Value	No rotation No rotation	Rotation:	No rotation No No rotation

PREPARER'S CERTIFICATION IN SECTION III MUST BE COMPLETED AND SIGNED.

FCC 301 (Page 19) May 1999

EXHIBIT B-2

PROPOSED DIGITAL FACILITY

CHANNEL 7 - KNOXVILLE, TENNESSEE

EXHIBIT C-1

VERTICAL RELATIVE FIELD PATTERN

PROPOSED DIGITAL FACILITY CHANNEL 7 - KNOXVILLE, TENNESSEE

EXHIBIT C-2

HORIZONTAL RELATIVE FIELD PATTERN

PROPOSED DIGITAL FACILITY
CHANNEL 7 - KNOXVILLE, TENNESSEE

EXHIBIT C-3

MAIN LOBE DIRECTIONAL ANTENNA PATTERN DATA

PROPOSED DIGITAL TELEVISION STATION CHANNEL 7 - KNOXVILLE, TENNESSEE

Azimuth (° T)	Relative Field	ERP (dbk)	Azimu <u>(° T)</u>	th Relative <u>Field</u>	ERP (dbk)
0	0.433	12.7	180	0.965	19.7
10	0.470	13.4	190	0.984	19.9
20	0.503	14.0	200	0.995	20.0
30	0.521	14.3	210	1.000	20.0
40	0.519	14.3	220	0.999	20.0
50	0.498	13.9	230	0.993	19.9
60	0.463	13.3	240	0.981	19.8
70	0.426	12.6	250	0.961	19.7
80	0.405	12.1	260	0.931	19.4
90	0.416	12.4	270	0.890	18.9
100	0.463	13.3	280	0.837	18.5
110	0.537	14.6	290	0.770	17.7
120	0.622	15.9	300	0.691	16.8
130	0.707	17.0	310	0.605	15.6
140	0.784	17.9	320	0.521	14.3
150	0.848	18.6	330	0.451	13.1
160	0.899	19.1	340	0.410	12.3
170	0.937	19.4	350	0.407	12.2

E

ATTACHMENT E

Memorandum of Agreement, Dated May 22, 2001, Between Holston Valley Broadcasting Corporation and Knoxville Channel 25, L.L.C.

MEMORANDUM OF AGREEMENT

In exchange for mutual consideration, hereby acknowledged, the Parties agree as follows:

Holston agrees to accept such interference as the proposed KC25 operation on DTV Channel 7 at Knoxville, TN may cause to the operation of WKTP-LP at Gate City/Weber City, VA.

KC25 agrees to accept such interference as the WKTP-LP operation at Gate City/Weber City, VA may cause to its alternatively proposed operation on DTV Channel 7 at Knoxville, TN. KC25 further agrees not to oppose before the FCC such application, if any, as Holston may subsequently file to increase the operating power of WKTP-LP (up to a maximum of .03 kilowatt [30 watts] transmitter output power) and agrees to accept such additional interference, if any, as such proposal may cause to its alternatively proposed operation on DTV Channel 7 at Knoxville, TN.

☑ 003

In furtherance of this Agreement, the Parties have fully analyzed the respective interference potential of the operations in question in the context of the public interest ramifications and have independently and jointly concluded that such operations would not be inimical to such interests. In part, that conclusion and this Agreement are premised upon the underlying analysis and opinion of competent technical counsel which in relevant part demonstrates that such interference would be minimal in terms of affected areas and populations. A report reflecting that circumstance is attached to and made a part of this Agreement.

The Parties acknowledge that WKTP-LP's prior application to the FCC to be deemed eligible to apply for Class A status was denied by the FCC and that WKTP-LP has filed and there remains pending a petition for reconsideration of that determination. The Parties nonetheless further agree in that respect that this Agreement will obtain and control concerning their respective rights and obligations without reference to such action as the FCC ultimately takes concerning the WKTP-LP petition for reconsideration.

This Agreement may be executed in counterparts, all of which together shall constitute one and the same instrument.

AGREED:	HOLSTON VALLEY BROADCASTING COMPONENTION
	By: Smig E. Datault - President
AGREED:	KNOXVILLE CHANNEL 25, L.L.C.
	By:

p.2

FINTCHER HEALD

05/21/01 17:22 FAX 703 812 048B

John B. Engelbrecht

469-7997

2003

In furtherance of this Agreement, the Parties have fully analyzed the respective interference potential of the operations in question in the context of the public interest ramifications and have independently and jointly concluded that such operations would not be inimical to such interests. In part, that conclusion and this Agreement are premised upon the underlying analysis and opinion of competent technical counsel which in relevant part demonstrates that such interference would be minimal in terms of affected areas and populations. A report reflecting that circumstance is attached to and made a part of this Agreement.

The Parties acknowledge that WKTP-LP's prior application to the FCC to be deemed eligible to apply for Class A status was denied by the FCC and that WKTP-LP has filed and there remains pending a petition for reconsideration of that determination. The Parties nonetheless further agree in that respect that this Agreement will obtain and control concerning their respective rights and obligations without reference to such action as the FCC ultimately takes concerning the WKTP-LP petition for reconsideration.

This Agreement may be executed in counterparts, all of which together shall constitute one and the same instrument.

AGREED:

HOLSTON VALLEY BROADCASTING C

AGREED:

KNOXVILLE CHANNEL 25, L.L.C.

ATTACHMENT F

Supporting Engineering Statement of Neil Smith, Dated June 13, 2001

ENGINEERING STATEMENT

The engineering data contained herein have been prepared on behalf of KNOXVILLE CHANNEL 25, L.L.C. ("KC25"), in support of its Memorandum of Agreement with Holston Valley Broadcasting Corporation ("Holston"), the licensee of Station WKTP-LP, Channel 7, Gate City, Virginia. KC25 proposes to operate in Knoxville, Tennessee, on Channel 7, digital. Because of the proximity of the two stations, each would cause interference to the other.

Employing Longley-Rice calculations, we find that the WKTP-LP 68 dbµ protected contour includes a population of 27,510, and that the KC25 Channel 7 DTV facility would cause interference to 2,634 of those persons, or 9.6 percent of the total. If WKTP-LP were to triple its ERP, it would provide 68 dbµ service to 51,213 persons, 4,585 of whom (9.0 percent) would receive interference from KC25. However, these figures exaggerate the impact of the interference.

Figure 1 shows the WKTP-LP 68 dbµ contour and the areas of predicted interference, shown as shaded one kilometer squares. We find that the two square kilometer interference area northeast of the transmitter site and the one square kilometer interference area west-southwest of the site have no population. Thus, the entire interference population is in the remaining six square kilometers generally to the south. Figure 2 shows the WKTP-LP 68 dbµ contour plus shaded areas denoting those places in which Grade B service is available from WKPT-TV, the parent station, based on Longley-Rice calculations. A comparison of Figures 1 and 2 reveals that where populated interference areas exist, there is also Grade B service from WKPT-TV. In other words, anyone who loses WKTP-LP service due to interference from the

SMITH AND FISHER

KC25 Channel 7 facility can receive the same programing from WKPT-TV, so no actual loss will result.

Figures 3 and 4 provide the same information but assume that WKTP-LP has increased power by a factor of three. In Figure 3 the four square kilometer interference area northeast of the transmitter site is uninhabited, meaning that the entire interference population is included in the other interference areas. Figure 4 shows that all of the people who would receive interference from the KC25 facility have Grade B service available from WKPT-TV, so, again, no true loss of service would occur.

The KC25 Channel 7 DTV facility would have a population of 1,354,181 within its digital service contour. WKTP-LP would cause interference to 4,120 persons within this contour, or 0.3 percent of the total. However, only 140 of these persons reside within the Knoxville DMA, in Cocke, Hamblen, and Hancock Counties. If WKTP-LP were to operate with triple its licensed ERP, the total interference population would increase to 6,171, or 0.5 percent of the total. Of these, only 760 reside in the Knoxville DMA, in the counties noted above. These interference effects are clearly negligible.

I declare under penalty of perjury that the foregoing statements are true and correct to the best of my knowledge and belief.

NEIL M. SMITH

June 13, 2001

FIGURE 2

FIGURE 4

CERTIFICATE OF SERVICE

I hereby certify that on this 20th day of June, 2001, a copy of the foregoing SUPPLEMENT TO PETITION FOR RULEMAKING AND FURTHER ALLOTMENT PROPOSAL was hand delivered to the following:

Mr. Roy J. Stewart Chief, Mass Media Bureau Federal Communications Commission The Portals II, Room 2-C347 445 Twelfth Street, S.W. Washington, DC 20554

Ms. Barbara Kreisman Chief, Video Services Division Mass Media Bureau Federal Communications Commission The Portals II, Room 2-A666 445 Twelfth Street, S.W. Washington, DC 20554

Mr. Clay Pendarvis
Chief, Television Branch
Video Services Division
Mass Media Bureau
Federal Communications Commission
The Portals II, Room 2-A662
445 Twelfth Street, S.W.
Washington, DC 20554

Mr. Gordon Godfrey Video Services Division Mass Media Bureau Federal Communications Commission The Portals II, Room 2-C120 445 Twelfth Street, S.W. Washington, DC 20554 Ms. Nazifa Naim Video Services Division Mass Media Bureau Federal Communications Commission The Portals II, Room 2-C834 445 Twelfth Street, S.W. Washington, DC 20554

Delphine Davis